
Implementation of Alternating Direction Method of
Multipliers (ADMM) Algorithm for Given Energy

Function
Xusong Wang Tzu-Ching Hung

Abstract—Super-resolution (SR), a technique that aims to
enhance the resolution of an imaging system, is an active research
field for image restoration over the past few decades. Since it
can reconstruct a clearer image from the noisy one generated
by lower-dosed X-ray, it is often used in Computer Tomography
(CT) to reduce the potential risk of DNA damage and cancer.
Recently, new frameworks have been proposed to improve
existing SR methods, one of them is Alternating Direction Method
of Multipliers (ADMM).

I. INTRODUCTION

Given multiple LR images, our main task in this paper is
to take them as input and then output one reconstructed HR
image based on ADMM framework with two different energy
functions using Euclidean `1-norm and `2-norm respectively.
Though in theory ADMM can be implemented on both CPU
and GPU, we will mainly focus on GPU implementation
and use Python implementation as CPU reference in order
to compare their performance and efficiency.

After ADMM is adopted, energy functions are split into
several subproblems and can be solved via different algo-
rithms, e.g., conjugate gradient (CG), or proximal operator.
These implementation details, including the algorithms used
and the decomposition of energy functions will be given in
later sections. The results, comparison and a short conclusion,
will also be provided at the end of this paper.

II. BACKGROUND

A. Energy Function

Generally, the following energy function should be con-
structed to estimate one high-resolution (HR) image from m
low-resolution (LR) images:

J =

m∑
i

||yi −Aix||L + λ

(w−1,w−1)∑
d=(0,0)

γ(d)||x− Sdx||1. (1)

In this equation, Ai are constant matrices of size M ×N , λ
is a constant indicating weight, yi are the input LR images
of size M × 1 and x is the output HR image of size N × 1.
m expresses the number of input images, L denotes p-norm
(e.g., Euclidean `1-norm or `2-norm), Sd is the shift operator
with d = (dx, dy) being the shifted distance along x-axis and
y-axis within a window of size w while γ(d) equals α|dx|+|dy|,
where α is a constant.

In our tasks, we consider two cases where L is equal to 1
and 2 respectively, so our energy functions can be formulated
as following:

J =

m∑
i

||yi −Aix||1 + λ

(w−1,w−1)∑
d=(0,0)

γ(d)||x− Sdx||1,

J =

m∑
i

||yi −Aix||22 + λ

(w−1,w−1)∑
d=(0,0)

γ(d)||x− Sdx||1.

(2)

Although these two equations look quite similar to each
other, implementation differs slightly. Details will be explained
in section III.

B. Alternating Direction Method of Multipliers (ADMM)

ADMM [1] is an optimization problem solver for method of
multipliers with good robustness. It deals with the following
problem:

minimize f(x) + g(y)

subject to Ax+By = c.
(3)

f(x) and g(y) are assumed to be convex here. The cor-
responding augmented Lagrangian of such a problem can
be formulated by introducing a dual variable (or Lagrange
multiplier) p:

Lρ(x, y, p) = f(x) + g(y)

+ pT (Ax+By − c)

+
ρ

2
||Ax+By − c||22.

(4)

In this augmented Lagrangian, ρ denotes the update step size
(or penalty parameter) for dual variable p, which can be
a constant or updated adaptively. Based on three different
variables x, y and p, we can split the original problem into
separate subproblems and solve them in the following steps
iteratively:

xk+1 = argmin
x

Lρ(x, y
k, zk)

yk+1 = argmin
y

Lρ(x
k+1, y, zk)

pk+1 = pk + ρ(Axk+1 +Byk+1 − c)

(5)

C. Proximal Operator

Proximal operators [2] are often utilized in mathematical
optimization. Such an operator of any arbitrary function f(x)
is defined as:

proxf (v) = argmin
x

f(x) +
1

2
||x− v||22. (6)

In our tasks, we decomposed the energy functions in a
way such that some of the ADMM steps match the form
shown above in order to take the use of proximal operators.
One main advantage is that they can be solved analytically,
which accelerates the computation speed with a relatively low
computation complexity.

III. NUMERICAL SOLUTIONS

For both energy functions, they share the same constant
matrices Ai and m, which are given in advance and are known
without computation. λ, α, and w can be tuned and thus lead
to different Sd and γ(d) accordingly. yi depend on the chosen
input images and are also known for both energy functions, as
shown in Eqn. 5, therefore, there is no need to compute some
of them.

A. `1-Norm Energy Function in ADMM

The `1-norm energy function in Eqn. 2 can be reformulated
in a more concise way:

J(x, z) =

m+w2∑
i=1

gi(zi), subject to

Aix− yi − zi = 0 i ∈ [1,m],

Tix− zi = 0 i ∈ [m+ 1,m+ w2].

(7)

In this form, new matrices Ti and functions gi(zi) are intro-
duced and defined as following:

Ti = In×n − Sd i ∈ [m+ 1,m+ w2], (8)

gi(zi) =

{
||zi||1 i ∈ [1,m],

λγ(d)||zi||1 i ∈ [m+ 1,m+ w2].
(9)

Applying dual variable p, the augmented Lagrangian can also
be reformulated:

LH(x, z, p) :=

m+w2∑
i=1

LHi
(x, zi, pi)

:=

m∑
i=1

(gi(zi) + 〈pi, Aix− yi − zi〉

+
ρi
2
||Aix− yi − zi||2)

+

m+w2∑
i=m+1

(gi(zi) + 〈pi, Tix− zi〉

+
ρi
2
||Tix− zi||2).

(10)

Based on the augmented Lagrangian, x can be solved via
conjugate gradient and zi via proximal operator. After x and zi
are updated, we can then update pi and ρi. Algorithm 1 shows

the rough workflow of `1-norm ADMM, while implementation
details can be found in the next section.

Algorithm 1 ADMM Workflow of `1-norm
Initialize λ,w, µ, σ, ρ, α, admmIter, ε1, ε2
Load LR images yi, i ∈ [1,m]
procedure SOLVING ADMM

z0i = 0, i ∈ [1,m+w2], x0 = 0, p0i = 0, i ∈ [1,m+w2]
while k < admmIter do

CG(xk)
for i = 1 to m+ w2 do

Prox(zki)
Update pki
Update ρki

if
∑
i ||rki ||22 < ε1 and

∑
i ||ski ||22 < ε2 then

break
k = k + 1

return xk

B. `2-Norm Energy Function in ADMM

Similarly, the `2-norm energy function in Eqn. 2 can be
reformulated as

J(x, z) =

m+w2∑
i=1

gi(zi), subject to

Tix− zi = 0 i ∈ [1,m+ w2],

(11)

with matrices Ti, functions gi(zi), and the augmented La-
grangian being:

Ti =

{
In×n i ∈ [1,m],

In×n − Sd i ∈ [m+ 1,m+ w2],
(12)

gi(zi) =

{
||yi −Aizi||22 i ∈ [1,m],

λγ(d)||zi||1 i ∈ [m+ 1,m+ w2].
(13)

LH(x, z, p) :=

m+w2∑
i=1

LHi(x, zi, pi)

:=

m+w2∑
i=1

(gi(zi) + 〈pi, Tix− zi〉+
ρi
2
||Tix− zi||2).

(14)

Algorithm 2 shows the rough workflow of `2-norm ADMM,
which is pretty similar to `1-norm ADMM. But since gi(zi) is
non-convex for i ∈ [1,m], zi in this range should be updated
using scaled conjugate gradient (SCG) instead.

C. Conjugate Gradient (CG)

Conjugate gradient (CG) is a powerful algorithm that can be
used to find the solutions of linear systems or unconstrained
optimization problems with symmetric and positive-definite
matrices. It is based on general optimization strategies, but
the search directions and step sizes are determined by second
order information instead. In our tasks, it is used to update
xk, and its pseudo code is shown in Algorithm 3.

Algorithm 2 ADMM Workflow of `2-norm
Initialize λ,w, µ, σ, ρ, α, admmIter, ε1, ε2
Load LR images yi, i ∈ [1,m]
procedure SOLVING ADMM

z0i = Upscaling(y1), i ∈ [1,m], z0i = 0,
i ∈ [m+ 1,m+ w2], x0 = 0, p0i = 0, i ∈ [1,m+ w2]
while k < admmIter do

CG(xk)
for i = 1 to m+ w2 do

if i ≤ m then
SCG(zki)

else
Prox(zki)

Update pki
Update ρki

if
∑
i ||rki ||22 < ε1 and

∑
i ||ski ||22 < ε2 then

break
k = k + 1

return xk

Algorithm 3 Conjugate Gradient
Input: Aq, b,maxIter, ε
Output: x
i = 0
x = [0, ..., 0]
r = b−Aqx
d = r
δnew = rT r
δ0 = rT r
tolerance = ε2δ0
while i < maxIter and δnew > tolerance do

q = Aqd
α = δnew/d

T q
x = x+ αd
r = r − αd
δold = δnew
δnew = rT r
β = δnew/δold
d = r + βd
i = i+ 1

return x

D. Scaled Conjugate Gradient (SCG)

One of the largest drawback of CG is that it only works for
positive definite cases and fails to converge to a stationary
point for other cases. As a result, a modified version of
CG, called scaled conjugate gradient (SCG) [3], has been
introduced to fix this problem. Algorithm 4 shows how zki
with i ∈ [1,m] in `2-norm is updated using SCG. One main
difference is that CG uses line-search technique to estimate the
step size and direction, while SCG utilizes a non-symmetric
approximation of the gradient instead. Also, a new scalar is
introduced and is used to regulate the indefiniteness of the
second order information.

Algorithm 4 Scaled Conjugate Gradient
Input: A, x, y, z1, p, ρ,maxIter,N
Output: zk
σ0 = 10−4

λ1 = 10−6

λ̄1 = 0
d1 = r1 = −∇zJ(z1)
k = 1
success = true
while k < maxIter do

if success = true then
σk = σ0/|dk|
δk = dTk [∇zJ(zk + σkdk)−∇zJ(zk)]/σk

δk = δk + (λk − λ̄k)|dk|2
if δk ≤ 0 then

λ̄k = 2(λk − δk/|dk|2)
δk = −δk + λk|dk|2
λk = λ̄k

µk = dTk rk
αk = µk/δk
∆k = 2δk[J(zk)− J(zk + αkdk)]/µ2

k

if ∆k ≥ 0 then
zk+1 = zk + αkdk
rk+1 = −∇zJ(zk+1)
λ̄k = 0
success = true
if k mod N = 0 then

dk+1 = rk+1

else
dk+1 = rk+1 + dk(|rk+1|2 − rTk+1rk)/µk

if ∆k ≥ 0.75 then
λk = 0.25λk

else
λ̄k = λk
success = false

if ∆k < 0.25 then
λk = λk + [δk(1−∆k)]/|dk|2

k = k + 1

return zk

IV. IMPLEMENTATION

A. Sparse Matrix-Vector Multiplication

A sparse matrix or sparse array is a matrix in which most
of the elements are zero. Sparse matrix vector multiplication
(SpMV) is one of the most common operations in scientific
and high performance applications, and it is often respon-
sible for the application performance bottleneck. While the
sparse matrix representation has a important impact on the
performance result of the application , selecting the right
representation normally depends on professional knowledge
and trial. A SpMV can be formally defined as y = Ax, where
the input matrix, A (M × N), is sparse, while the input, x
(N × 1) and the output, y (M × 1), vectors are dense. In the

simple example below, the shape of sparse matrix A is 4× 4,
with the input x and the output y being 4× 1.

0 6 1 0
2 0 8 3
0 0 4 0
0 7 5 0

 ∗


2
4
6
8

 =


34
76
24
58


B. Sparse Matrix Representation

Because most of the elements of a sparse matrix are null,
considering the arithmetic operations and storage, it would
be a waste of space and time on them without compression.
Therefore, researchers have designed a number of compressed
storage representations to store only the nonzeros.

1) Compressed Sparse Row (CSR): Compressed sparse row
(CSR) format is the most popular, general-purposed sparse
matrix representation. It stores column indices and nonzeros
in array indices and data explicitly, and then uses a third array
ptr to store the starting nonzero index of each row in the sparse
matrix (i.e., row pointers). For an M×N matrix, ptr is of size
M+1 and stores the offset into the ith row in ptr[i]. Thus, the
last entry of ptr is the total number of nonzeros. CSR format
is a natural extension of COO (coordinate format) format by
using a compressed scheme. In this way, CSR can reduce
the storage requirement. More importantly, the introduced ptr
facilitates a fast query of matrix values and other interesting
quantities such as the number of nonzeros in a particular row.

If we represent the 4×4 matrix A situated above using CSR
format, it becomes:

ptr = [0, 2, 5, 6, 8],

indices = [1, 2, 0, 2, 3, 2, 1, 2],

data = [6, 1, 2, 8, 3, 4, 7, 5].

C. Sum Reduction

The sum reduction is a step that is required for the calcula-
tion of the dot product operation. In comparison, all products
can be computed at the same time. Meanwhile, the reduce
requires a combination of all indices. In a naive approach, one
work-item sums up all values one after another, which results
in the complexity of O(n). The most common algorithm
[Harris 2007][4] uses one work-item for a pair of inputs,
updates one value with their sum, and disregards the other
values, thereby halving the number of remaining values. This
step is repeated until only one value remains so the total
complexity is O(logn).

D. CSR-Stream

CSR-Stream: Although CSR is a general-purposed sparse
matrix representation and it has compressed the storage, this
format is not designed for arithmetic operations on GPU,
such as SpMV. On one hand, CSRs usually has good per-
formance on the CPU, on the other hand, since CSRs have
irregular memory access patterns, load imbalance and lack
of parallelism, generally, leads to low performance if GPU
applies multiplications based on the CSR format. Although

there are matrix formats which are specialized for arithmetic
computations, they are not widely adopted and conversion
from or to CSR causes a lot of overhead. Greathouse et al.
[5] introduced a fast SpMV algorithm which uses the CSR
format, called CSR-Stream.

CSR-Stream takes benefit of multiple work groups. Each
work group processes a certain number of non-zero coeffi-
cients of the matrix and then multiplies them with respective
coefficients of the input vector. The number of processed rows
might differ between different work groups. Therefore, we use
RB[] to indicate each work group the number of the rows
that should be processed. For example, a work group needs to
process RB[workgroupID+ 1]−RB[workgroupID] rows.
The result of these multiplications is stored in local memory.
This streaming into local memory is designed to be coalesced
in terms of global memory access. After this stream, each
work item of a work group performs the last reduction step,
i.e. a summation to calculate a resultant coefficient. Each work
item might need to perform sum reduction multiple times on
local memory. The advantage of local memory is that access is
much more efficient than global memory. Algorithm 5 shows
the pseudo-code of CSR-Stream.

CSR-Streaming and sum reduction are two important steps,
and they are implemented in the kernels csr stream and
csr sum reduction of our programs respectively.

Algorithm 5 CSR-Stream
Input: V al[], OS[], II[], RB[], x[]
Output: output[]
startRow = RB[workgroudID]
nextStartRow = RB[workgroudID + 1]
numNonZeros = OS[nextStartRow]−OS[startRow]
Stream(val, OS, II, numNonZeros)
numRows = nextStartRow − startRow
localRow = startRow + localID
while localRow ¡ numRows do

threadStart = OS[localRow]−OS[startRow]
threadEnd = OS[localRow + 1]−OS[startRow]
temp = Sum−Reduction(threadStart, threadEnd)
output[localRow] = temp
localRow = localRow + workGroupSize

return x

E. Conjugate Gradient

As algorithm mentioned in the previous section, the im-
plementation of CG needs a sparse matrix Aq and a right-
hand side vector b as inputs. Based on given `1-norm energy
function, the inputs Aq and b can be formulated as:

Aq =

{
ρkiA

T
i Ai i ∈ [1,m],

ρki T
T
i Ti i ∈ [m+ 1,m+ w2],

(15)

b =

{
ATi [(yi + zki)ρki − pki] i ∈ [1,m],

TTi (ρki z
k
i − pki) i ∈ [m+ 1,m+ w2].

(16)

For given `2-norm energy function, the input parameters are
formulated in a quite similar way:

Aq =

{
ρki I

T
i Ii i ∈ [1,m],

ρki T
T
i Ti i ∈ [m+ 1,m+ w2],

(17)

b =

{
ρki (zki − pki) i ∈ [1,m],

TTi (ρki z
k
i − pki) i ∈ [m+ 1,m+ w2].

(18)

The adaptive coefficient ρki is updated in each iteration, so
both the matrix Aq and right hand side vector b are updated
in each iteration as well. The latter one is done with the
kernels cgUpdateV ectorB1 and cgUpdateV ectorB2 based
on the value of i while the former one is done in the
main ADMM loop with C++ function calcQuadMatrix. The
implementation process is described as below:
• There are three main initialization kernels, one called
initZero which initializes vector x (line 2) to zeros.
Another kernel named cgInitZero initializes the padded
vector. And initialization of the vectors r and d (lines 3-4)
depends on x and so they are initialized in an additional
kernel cgInit.

• Dot products for δ and α are done by calculating point-
wise products obtained in the previous kernels using
sumKernel. The latter one also requires additional
values such as δnew and thus uses a separate kernel
cgUpdateAlpha.

• The convergence property is checked on the host, so it
requires reading the value of δnew from GPU to the host.

• Vectors q update, x and d are calculated in the
kernels cgUpdateV ec Q, cgUpdateV ecs XR and
cgUpdateV ec D respectively.

• Computation of β is done in the main CG iteration routine
on host and then passed as kernel argument after update.

F. Scaled Conjugate Gradient

SCG is only used when updating zki with i ∈ [1,m] in `2-
norm. Similar to CG, we need to initialize some parameters
at the beginning. For simple scalars like σ0, λ1, λ̄1, k, and
success, they can be set by the host directly. As for the
gradient and the energy function in the initialization part and
afterwards, the following kernel functions are necessary:
• GradientKernel1 calculates vector G = y−Az, which

is used for further cost function and gradient computation.
• GradientKernel2 performs the rest of the gradient

computation by first calculating ATG and then −2ATG+
ρ(x− z)− p.

• CostFunction1 calculates the dot product of two vec-
tors. For cost function computation the input vectors are
G obtained by GradientKernel1.

• CostFunction2 calculate the rest of the energy function
and adds it to the result obtained by CostFunction1.

For other operations in the main SCG iteration routine,
CostFunction1 is modified and reused for those that need
to perform dot product. And another simple kernel function
UpdateZ is also added for the update of z and d.

G. Proximal Operators

For calculating zk+1
i with i ∈ [1,m], gi(zi) can be calcu-

lated according to the proximal operator of the `1 norm as
following:

zk+1
i =argmin||zi||1

zi

+
ρki
2
||zi −Aixk − yi +

pki
ρki
||22

=proxp−1
i
||•||1(Aix

k + yi −
pki
ρki

),

(19)

[zk+1
i]j =



[Aix
k + yi −

pki
ρki

]j −
1

ρki
[Aix

k + yi −
pki
ρki

]j ≥
1

ρki
,

0 [Aix
k + yi −

pki
ρki

]j ≤
1

ρki
,

[Aix
k + yi −

pki
ρki

]j +
1

ρki
[Aix

k + yi −
pki
ρki

]j ≤ −
1

ρki
.

(20)
For calculating zk+1

i with i ∈ [m+ 1,m+ w2], gi(zi) can
be calculated according to the proximal operator of both the
`1 norm and `2 norm as following:

zk+1
i = argminλγ(d)||zi||1

zi

+
ρki
2
||zi − Tixk −

pki
ρki
||22

= proxλγ(d)p−
i
1||•||1(Tix

k +
pki
ρki

)

(21)

[zk+1
i]j =



[Tix
k +

pki
ρki

]j −
λγ(d)

ρki
[Tix

k +
pki
ρki

]j ≥
λγ(d)

ρki
,

0 [Tix
k +

pki
ρki

]j ≤
λγ(d)

ρki
,

[Tix
k +

pki
ρki

]j +
λγ(d)

ρki
[Tix

k +
pki
ρki

]j ≤ −
λγ(d)

ρki
.

(22)

H. Update of p

There is only a little difference between the implementation
of `1-norm and `2-norm for the update of p. Both solutions
are still straightforward to implement. The update according
to `1-norm is:

pk+1
i =

{
pki + ρki (Aix

k+1 − yi − zk+1
i) i ∈ [1,m],

pki + ρki (Tix
k+1 − zk+1

i) i ∈ [m+ 1,m+ w2].
(23)

In the case where i ∈ [1,m], a single SpMV operation between
the ith constant matrix Ai and vector x is needed. This relevant
kernel is called Solve P2. As for the case where i ∈ [m +
1,m + w2], the kernel is named Solve P1, and matrix Ti
equals I − Sd.

The update of p according to `2-norm is as following:

pk+1
i =

{
pki + ρki (xk+1 − zk+1

i) i ∈ [1,m],

pki + ρki (Tix
k+1 − zk+1

i) i ∈ [m+ 1,m+ w2].
(24)

It also includes only one SpMV operation and some
coefficient-wise operations. For i ∈ [1,m], there is even no
SpMV operation necessary.

I. Update of ρ

The penalty parameter ρi is updated in the end of each
iteration:

ρk+1
i =


cincρki ||rki ||2 > c||ski ||2,
ρki /c

dec ||ski ||2 > c||rki ||2,
ρki otherwise.

(25)

where cinc, cdec, and c are constants with cinc > 1, cdec > 1,
and c > 1. The primal and dual residuals rki , ski for i ∈ [1,m]
are calculated as:

rk+1
i := Aix

k+1 − zk+1
i − yi,

sk+1
i := −ρkiATi (zk+1

i − zki).
(26)

While the primal and dual residuals rki , ski for i ∈ [m+1,m+
w2] are calculated as:

rk+1
i := Tix

k+1 − zk+1
i ,

sk+1
i := −ρki TTi (zk+1

i − zki).
(27)

V. EVALUATION

A. Parameter Settings

Both energy functions take m = 4 LR images as input. The
window size w and α can be tuned but we choose them to be
2 and 0.4 respectively in our cases to make it consistent with
Python reference. Initial ρi equals to 0.001 for both energy
functions with cinc, cdec being 2 and c being 10. λ can also
be tuned, and we choose it to be 0.5 for `1-norm and 0.1 for
`2-norm.

Although our program works for various images, most of
them show similar behaviour. As a result, we only take one
of them as the representative and explain its results in the
following parts. The image we choose is shown in Fig. 1.

Fig. 1. Ground Truth of Camera 180+1.8

B. Performance of ADMM

One of the most common ways to compare performance is
by using peak signal-to-noise ratio (PSNR). For the resultant
HR image x̂ with a given ground truth image x∗, its PSNR
can be calculated as:

PSNR(x̂, x∗) = 10log10(
I2max
MSE

), (28)

with Imax being the maximum possible pixel value of the
image and MSE denotes the mean squared error between x̂
and x∗.

Fig. 2 shows the PSNR of both energy functions over 400
iterations. Python is our CPU reference, and CPU is the result
obtained when implementing our GPU codes on a CPU. Not
surprising, GPU and CPU achieve the same performance,
which is very close to our Python reference but slightly better
than it for both energy functions. From this figure, we can see
that PSNR grows rapidly in the first 10 iterations and then
eventually converges to 26.5 dB for `1-norm. As for `2-norm,
it is completely different. Its PSNR starts at the highest peak
and keeps decreasing during every iteration.

Fig. 3 shows all reconstructed HR images after 400 it-
erations. Images in the upper row are generated by Python
while those in the lower row are generated by our GPU
codes. We can see that our codes generate brighter images
with sharper boundaries. The left column is based on `1-norm
energy function while the right column is based on `2-norm
energy function. Obviously, using `2-norm will lead to some
artifacts which do not appear in `1-norm cases.

C. Runtime of ADMM

Table 1 shows the time required for each method to com-
plete 400 iterations. Kernel indicates the computation time
spent on a device platform, communication expresses how long
it takes to pass the buffers between device and host, and the
total is the sum of all operations on both device and host.
From this table, we can see that although `2-norm is worse
than `1-norm in terms of PSNR, it is much faster than `1-norm
regardless of platform type.

TABLE I
ADMM RUNTIME FOR 400 ITERATIONS

Methods Runtime (sec)

Platform Energy Function Kernel Communication Total

Python
`1 - - 625.92
`2 - - 180.13

CPU
`1 50.49 3.48 376.28
`2 37.76 1.02 131.13

VI. CONCLUSION

In this paper, we first briefly introduce the purpose of
ADMM and demonstrate how it can be used to reconstruct HR
images from LR images based on different energy functions.
We also elaborate some mathematical techniques used to solve
the subproblems, e.g. CG, SCG, and proximal operator. The

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

0 50 100 150 200 250 300 350 400

PS
N

R
(d

B)

iteration

PSNR

GPU

Python

CPU

(a) `1-PSNR

10

12

14

16

18

20

22

24

26

28

0 50 100 150 200 250 300 350 400

PS
N

R
(d

B)

iteration

PSNR

GPU

Python

CPU

(b) `2-PSNR

Fig. 2. ADMM PSNR over 400 iterations

(a) `1-Python (b) `2-Python

(c) `1-GPU (d) `2-GPU

Fig. 3. Resultant HR images over 400 iterations

performance (PSNR) and runtime for `1-norm and `2-norm
energy functions on different platforms are given, and it is
proven that by utilizing GPU and CSR representation we can
indeed speed the process since matrix multiplication is the
most time-consuming part of all calculation.

The results also show that although `2-norm with SCG
leads to poor performance and artifacts, it is much faster than
`1-norm, which achieve better performance. As a result, we
cannot say that using `1-norm is definitely a better choice.

The choice of energy function type and hence the suitable
mathematical approach depends on the application.

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed Op-
timization and Statistical Learning via the Alternating Direction Method
of Multipliers. Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1-122, 2010.

[2] N. Parikh and S. Boyd, Proximal Algorithms. Foundations and Trends R©

in Machine Learning, vol. 1, no. 3, pp. 123-231, 2013.

[3] M. F. Møller, A Scaled Conjugate Gradient Algorithm for Fast Supervised
Learning. Neural Networks, vol. 6, pp. 525-533, 1993.

[4] M. Harris, Optimizing parallel reduction in cuda. NVIDIA Developer
Blog, 2007.

[5] J. L. Greathouse and M. Daga, Efficient Sparse Matrix-Vector Multiplica-
tion on GPUs Using the CSR Storage Format. International Conference
for High Performance Computing, Networking, Storage and Analysis, pp.
769–780, 2014.

