
LSTM networks for time series simulation

Xusong Wang

A report submitted in partial fulfillment for the
Seminar of

Machine Learning in Numerical Simulation

Institute for Parallel and Distributed Systems
Universität Stuttgart

Supervisor: M.Sc. Raphael Leiteritz

Winter Semester 2019/2020



Contents

1 Introduction 3
1.1 Neural Networks(NN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Feedforward networks and backpropagation . . . . . . . . . . . . . . . . . . . . 4

1.2 Recurrent Neural Networks(RNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Why Use RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Standard Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 The Problem of Standard RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Long short-term memory(LSTM) 8
2.1 Introduction of LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 LSTM Cell Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Applications of LSTM 11
3.1 Offline Handwriting Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Exposing privacy of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Summary 13

Bibliography 14

2



Chapter 1

Introduction

1.1 Neural Networks(NN)

Neural networks are biologically motivated models of computation. They are well satisfied with the

machine perception task, it is not like the hand-engineered features. A neural network conclude a set of

artificial neurons,which are labeled j, associating the neuron are the link function(also know as activation

function) labeled lj(.), the output value vj of each neuron j is calculated as below:[6]

vj = lj(
∑
j′

wjj′ .v
′
j). = lj(aj).

By applying its activation function, with a weighted sum of the values of its input node: wjj′ is a weight

associated from node j′ to j ,and activation also noted as aj =
∑

j′ wjj′ .v
′
j

Figure 1.1: Neural Network

When the exact activation function with a sigmoid function is applied, then the output is σ(aj) =
1

1+e−aj
. Other activation such as: tanh function φ(z) = ez−e−z

ez+e−z also become common in feedforward

3



neural networks. Rectified linear unit(ReLU) lj(z) = max(0, z) has been demonstrated well in DNN .

For the multiclass classification task, a softmax non-linearity in an output layer of K nodes is applied

hk =
eak∑K

k′=1 e
ak′

for k = 1 to k = K. The denominator is a normalizing term consisting of the sum of the numerators,

ensuring h1 + h2 + ..hK = 1

1.1.1 Feedforward networks and backpropagation

The Order in which computation should proceed must be determined. x is the lowest layer, and each higher

layer is successively computed until the output is generated at the most top layer y̌. Learning is by iterated

weights, to minimize a loss function L(h, y). Back-propagation, which introduced by Rumlhart et al.[8],

is the most successful algorithm for training the NN. The chain rule is used to calculate the derivative of

the loss function L(h, y). Gradient descent is used to updates the weights. If Back-propagation will reach

the global minimum is no guarantee, while the loss surface is convex.

Figure 1.2: Convex and Nonconvex

Stochastic gradient descent is often used to train NN.w ← w− η∇wFi η is the learning rate,∇wFi is

the gradient of the object function which respect to the parameters w. Process of the back-propagation as

follows: First, an example is propagated forward through the network to produce a value vj at each node

and output y̌ at the toppest layer. Then, a loss function value L(y̌k, yk) is computed at each output node k,

afterwards, for each output node k, we calculate

δk =
∂L(hk, yk)

∂hk
∆l′k(ak)

Then we calculate δj = l′(aj)
∑

k δk∆wkj . This calculation is performed successively for each lower

layer to yield δj . Each value δj represents the derivative ∂L/∂aj of the total loss function . vj calculated

during the forward pass, and the value δj calculated during the backward pass. The derivative of the loss

L with respect a given parameter wjj′ is ∂L
∂wjj′

= δjvj′ .[6]

1.2 Recurrent Neural Networks(RNN)

Recurrent neural networks are feedforward neural networks increased by the inclusion of edges that span

adjacent time steps, introducing a notion of time to the model.

4



1.2.1 Why Use RNN

In past years datasets are far larger.DNNs and CNN have demonstrated outstanding results. But DNN and

CNN rely on the assumption of independence of the training dataset. If datasets are not independently

generated, related in time or space, the result is unacceptable. Additionally, a standard neural network

is just vectors of fixed length. RNN can model input and output consisting of sequences of elements

that are not independent. A model trained using an x-length context window could never be trained to

answer a simple question with an x+1 length. The modern interactive system of economic importance

includes driver-less cars or robotic surgery. An explicit model of sequentially or time is necessary. For

example,x1, x2, x3..xt are input sequence,y1, y2, y3..yt are target sequence,when a model predicted data

points,predicted data are labeled ht, A model,trained using a 3-length context window,could be able to

predicted the sequence, such as “Yann climbs the mountain”,where x1 = Y ann,x2 = climbs, etc.

1.2.2 Standard Recurrent Neural Network

Recurrent neural networks are the neural networks with loops in them. And they store the information.

Therefore, they are able to predict the output from the previous information. However, Long Short-Term

Memory (LSTM) network is a particular type of recurrent network that works better in practice, because

of its more powerful update equation and some appealing back-propagation dynamics.

Figure 1.3: Compare between NN and RNN

This loop allows the information to be passed from one step to the next step. There is a more explicate

way to demonstrate, that is, to unroll the recurrent neural network.

Figure 1.4: the unrolled standard RNN

5



The chain clearly demonstrates that recurrent neural networks store the information and take advantage

from the previous information. The hidden node value is given by the equations below:

ht = σ(W hxxt +W hhht−1 + bh)

ht : hidden node values of current state

ht−1 : hidden node values of previous state

xt: current input date point W hx: the matrix of conventional weights between the input and the hidden

layer

W hh: the matrix of recurrent weights between the hidden layer and itself at adjacent time steps

bh: bias parameters which allow each node to learn an offset

σ(.) : activation function , e.g. tanh - function implements a non-linearity that squashes the activations to

the range [-1 , 1]

Considering the architecture of the RNN, if the tanh function is taken as the activation function,

zooming in the network structure, for standard RNN, a simple repeating module is the structure of network

as below.

Figure 1.5: a typical RNN with tanh as the activation function

In a manner of coding, the RNN’s API consists of a single step function

1 rnn = RNN( )

2 y = rnn . s t e p ( x )

where x is an input datapoint, y is the RNN’s output vector, below is a class step function of RNN wrote

by python: [5]

1 c l a s s RNN:

2 # . . .

3 d e f s t e p ( s e l f , x ) :

4 # u p d a t e t h e h id de n s t a t e

5 s e l f . h=np . t a n h ( np . d o t ( s e l f . W_hh , s e l f . h )+ np . d o t ( s e l f . W_xh , x ) )

6 # compute t h e o u t p u t v e c t o r

7 y = np . d o t ( s e l f . W_hy , s e l f . h )

8 r e t u r n y

6



1.2.3 The Problem of Standard RNN

Recurrent Neural Network demonstrates that it in principle to connect previous information to the present

step, such as using previous words to the current task, be able to predict the next word. However, Recurrent

Neural Network takes too much time or do not perform well, especially when minimal time lags between

inputs and previous signal are too long.[4]

In some cases, we require to look at recent information to perform the present task. For example,

consider a language model is trying to predict the next word based on the previous ones. If a predicted

model was implemented, trying to predict the last word in "English as a global language," the result might

turn to be "language," the prediction only needs the previous few words, without the whole context. In a

case like this, time lags between the current input and relevant information are relatively small, RNNs

work well to predict.[7]

Figure 1.6: RNN with a short time lag

However, there are many examples that RNNs work not well. A typical example is that trying to

predict the last word in the text, "Kylian grew up in France. . . Kylian speaks fluent French." From

the recent information, the next word might be a kind of language, but diving into the details, the first

sentence, "I grew up in France," is required. It is a relatively long time lag from the previous relevant

information to the current input, which RNNs perform not very well. It indicated that as that gap grows,

we need another algorithm to connect the information. These problems are theoretically revealed by the

Hochreiter(1991)[3], error signals "flowing backward in time" tend to either blow up or vanish, which

turn to be either oscillating weights or take an amount of time or does not work at all.

Figure 1.7: RNN with a long time lag

7



Chapter 2

Long short-term memory(LSTM)

2.1 Introduction of LSTM

Long Short-Term Memory networks – also known as "LSTM" – are a particular type of RNN, but they are

more capable of learning long-term dependencies. LSTM was introduced by Hochreiter and Schmidhuber

(1997). [4]

The LSTM architecture described uses carefully designed nodes with recurrent edges with fixed

unit weight as a solution to the vanishing gradient problem. It is explicitly intended to bypass the long-

term dependency problem, remembering information for long periods of time is practically their default

behavior.

2.2 LSTM Cell Structure

All recurrent neural networks have the form of a chain of repeating modules of neural network. Look

back to the standard RNNs, it is a repeating module with simple structure. LSTM also has chain like

Figure 2.1: a typical RNN with tanh as the activation function

structure, but the repeating module has a different structure. Instead of a single neural network layer, there

are four different and mutual layers, which are designed to interact each other. There are some node called

gates that are specially defined in the LSTM, they are like filters, which allow the optional information

8



to pass,that if the value of gate turns to be zero, then flow from the other node is cut off. The other way

around, if the value of the gate is one, all flows passed through.

Figure 2.2: Architecture of a LSTM

• Input node: In the original LSTM paper, the activation function of input mode is a sigmoid layer,

however, a tanh layer is typically used these days. This unit is labeled with g(t), which takes

activation in the standard way from the input layer x(t) and at the current time step and from the

hidden layer at the previous time step h(t−1).

g(t) = tanh(W gxx(t) +W ghh(t−1) + bg)

• Input gate layer: A input gate layer is also a sigmoid layer, it takes activation from the current data

point x(t) and h(t−1) ,which is from the hidden layer at the previous time step . The reason why it

is called input gate is that, There is a multiplication between the value input layer and the value of

the input mode .

i(t) = σ(W ixx(t) +W ihh(t−1) + bi)

• Cell state layer: the output of old state ct−1, to be filtered , multiplied the output value of forget

gate,into f (t) ∗ ct−1, this is to forget the previous information. One last step to update the cell state,

is to use i(t) to input the candidates g(t) :

c(t) = f (t) ∗ c(t−1) + i(t) ∗ g(t)

• Forget gate layer: These gates were introduced by Gers et al. [2000]. They are made by a sigmoid

layer. This is especially useful in continuously running networks. In the example of "Kylian grew

up in France. . . Kylian speaks fluent French." If a new person is introduced, with forget gates, the

gender of Kylian is forgotten, which is also required. Further, the equation to calculate the value of

forgetting the gate layer is as below:

f (t) = σ(W fxx(t) +W fhh(t−1) + bf )

9



Figure 2.3: a typical LSTM Memory Cell with a forget gate

• Output gate layer: The hidden state output value is based on the cell state layer output ct, then a

tanh activation is used to squashes the value to the range [-1, 1], finally the output multiplied by

o(t), whose filter ratio is decide by the output gate layer:

o(t) = σ(W oxx(t) +W ohh(t−1) + bo)

h(t) = tanh(c(t)) ∗ o(t)

Above is the typical LSTM with a forget gate, there are other slightly different variants, but the differences

are minor.

10



Chapter 3

Applications of LSTM

3.1 Offline Handwriting Recognition

Figure 3.1: The complete recognition system

Handwriting Recognition is an interesting task which is divide into offline recognition and online

recognition. In the online case, there are two features that are provided to analysis, the pen trajectory and

11



the image of the result. However, offline recognition is distinctly to be harder because only the image is

available. Jurgen Schmidhueber, one of the Founders of LSTM, holds research in this interesting task.

He combined multidimensional recurrent neural networks and connectionist temporal classification in

neural network, introduced a globally trained offline handwriting recognizer that takes raw pixel data

as input, with a flexibility for any language.[2]The recognizer demonstrated a outstanding performance

which shined in an international Arabic recognition competition,where it outperformed all entries despite

the fact that neither author understands a word of Arabic.

3.2 Exposing privacy of IoT

The IoT (Internet of Things) technology has been widely adopted in recent years and has profoundly

changed people’s daily lives. Researchers from the Chinese University of Hong Kong looked into the

private information of the IoT devices, they proposed a traffic analysis framework based on LSTM and

found the relations between packets for the attack of device identification. They used different methods to

evaluate the leaking information.

Table 3.1: Accuracy of baseline model under pure-IoT scenario

By researching the relations between packets through models like LSTM, they showed it is possible to

achieve high accuracy in device identification, even under the complex network environment. their result

suggests the network communications of IoT devices do have serious privacy implications, even under

encryption and traffic fusion.[1]

12



Chapter 4

Summary

Considering the traditional recurrent neural network, the problems of vanishing and exploding gradients

occur when back-propagating errors across many time steps. It makes RNN especially challenging

due to the difficulty of learning long-range dependencies. Therefore, as proposed by Hochreiter and

Schmidhuber,[4] the LSTM model was introduced to overcome the problem of vanishing and exploding

gradient. It resembles the input gate, output gate, forget gate and cell state, to make LSTM more capable

of learning long-term dependencies.

13



Bibliography

[1] S. Dong, Z. Li, D. Tang, J. Chen, M. Sun, and K. Zhang. Your smart home can’t keep a secret:

Towards automated fingerprinting of iot traffic with neural networks, 2019.

[2] A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional recurrent

neural networks. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural

Information Processing Systems 21, pages 545–552. Curran Associates, Inc., 2009.

[3] S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. 1991.

[4] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9:1735–80, 12

1997. doi: 10.1162/neco.1997.9.8.1735.

[5] A. Karpathy. The unreasonable effectiveness of recurrent neural networks. URL http://

karpathy.github.io/2015/05/21/rnn-effectiveness/.

[6] Z. C. Lipton, J. Berkowitz, and C. Elkan. A critical review of recurrent neural networks for sequence

learning, 2015.

[7] C. Olah. Understanding lstm networks. URL https://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

[8] H. G. . W. R. Rumelhart, D. Learning representations by back-propagating errors, 1986.

14

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

	Introduction
	Neural Networks(NN)
	Feedforward networks and backpropagation

	Recurrent Neural Networks(RNN)
	Why Use RNN
	Standard Recurrent Neural Network 
	The Problem of Standard RNN


	Long short-term memory(LSTM)
	Introduction of LSTM
	LSTM Cell Structure

	Applications of LSTM 
	Offline Handwriting Recognition
	Exposing privacy of IoT 

	Summary
	Bibliography

